
Probabilistic Segmentation and Detection of Aneurysm from brain

MRA with an Ensemble of 3D Convolutional Neural Networks and

Monte Carlo Dropout.

Corentin Giroud1,2 and Florian Dubost1

1Zelos Mediacorp, Rotterdam, Netherlands
2Ecole des Mines de Saint-Etienne, Saint-Etienne, France

August 17 2020

1 Method overview

1.1 Method.

We first created probability maps highlighting the po-
sitions of aneurysms using an ensemble of 4 networks
and Monte Carlo Dropout [2]. We created a seg-
mentation by thresholding the probability maps at
0.8. For the detection, we computed the centers of
mass of the segmented connected components. The
networks were 3D variants of the standard segmen-
tation U-Net [1], trained of different random splits
of the dataset. We trained 3 networks per split and
selected the networks that had the best combination
of sensitivity and false positive detections. It takes
about 3 minutes in average to predict the aneurysm
segmentation with our method, when running them
on a NVIDIA 1070 GPU.

1.2 Dataset.

We used the training set of the Aneurysm Detection
And segMentation Challenge, MICCAI 2020, to train
our algorithms. We used the TOF-MRA images of
113 subjects without preprocessing. The image di-
mensions ranged from 256 to 1024 voxels in x and y
and from 64 to 180 voxels in z. The voxel sizes ranged
from 0.2 to 0.6 mm in x and y and from 0.4 to 1 mm

in z. We only used images available in the challenge’s
training set.

2 Preprocessing

We resized all images to 512x512x96 voxels with lin-
ear upsampling and downsampling. Then, for each
image, we extracted a patch of 224x224x56 voxels
centered on the voxel at position x=247, y=208 and
z=47. This was the average position of the aneurysms
in the brain in the training set. Lastly, we rescaled
image intensity values between 0 and 1 using 1-99th
percentile normalization.

3 Convolutional
Neural Network

3.1 Model Architecture.

We used a 3D variant of U-Net [1], a standard convo-
lutional neural network for segmentation. The net-
work consisted of a contracting path and an upsam-
pling path. In the contracting path, there were 3 se-
ries of 2 successive convolutional layers followed by a
maxpooling layer. The contracting path ended with a
single convolution layer of 256 feature maps. The first
pair of convolutional layers computed 8 features maps

1



for each convolution, the second 32, and the last 128.
After the last convolution of the contracting path, we
added a Batch Normalization layer [6] with Keras’ de-
fault parameters [3] followed by a Dropout layer [5] at
20 percent. Then followed the upsampling path, with
successively a trilinear upsampling layer, a concate-
nating skip connection with the feature maps of the
contracting path at the corresponding resolution, and
a convolutional layer until reaching the resolution of
the input image. Each convolution of the upsampling
path computed 8 feature maps. Each convolution in
the network had a filter size of 3x3x3 and was fol-
lowed by a ReLU activation. The network ended with
a Batch Normalization layer [6] with Keras’ default
parameters [3], a Dropout layer [5] at 20 percent, a
1x1x1 convolutional layer computing a single feature
map, and a sigmoid activation to rescale the value
between 0 and 1.

3.2 Training.

Models were trained with a Dice similarity loss func-
tion on randomly selected train and validation splits.
We used Adadelta optimizer [4] with Keras’ default
parameters [3]. To increase the number of learning
examples, we generated random transformation of ex-
isting ones with data augmentation. During training,
on-the-fly random translations, rotations and flipping
were used. Training one model lasted 18 hours on a
single GPU. Models were trained until convergence
of the loss function evaluate on a separate validation
set. The model achieving the best Dice loss function
on the validation set across epochs was selected.

3.3 Prediction.

During inference, we used Monte-Carlo dropout [2].
Dropout was applied at both during training and
inference. During inference, the prediction was no
longer deterministic, but depended on the randomly
chosen neurons. Therefore, for the same image, our
model could predict different maps at every infer-
ence. For each image, we averaged the predictions
of 100 Dropout iterations at 20 percent to compute
the probability map during inference.

4 Ensembling

We created 4 random splits of the dataset into train-
ing of 91 images and validation sets 22 images. We
trained 3 networks on each of these splits, and se-
lected the networks that achieve the best performance
on their split. The probability maps predicted by
each networks were then averaged into a single prob-
ability map.

5 Post-processing

The probability maps were thresholded at 0.8.
We removed all connected components larger than
15x15x15 voxels, and retained those that had a vol-
ume higher that 20 voxels. Lastly, the predicted seg-
mentations were resized to the original input image
dimensions.

6 References

[1] Ronneberger O., Fischer P., Brox T. (2015)
U-Net: Convolutional Networks for Biomedical
Image Segmentation. In: Navab N., Hornegger J.,
Wells W., Frangi A. (eds) Medical Image Computing
and Computer-Assisted Intervention – MICCAI
2015. MICCAI 2015. Lecture Notes in Computer
Science, vol 9351. Springer, Cham.
[2] Wang, S., and Manning, C. (2013, February).
Fast dropout training. In international conference
on machine learning (pp. 118-126).
[3] Chollet, F. others, 2015. Keras. Available at:
https://github.com/fchollet/keras.
[4] Zeiler, M.D., 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.
[5] Srivastava, N., Hinton, G., Krizhevsky, A.,
Sutskever, I. and Salakhutdinov, R., 2014. Dropout:
a simple way to prevent neural networks from over-
fitting. The journal of machine learning research,
15(1), pp.1929-1958.
[6] Ioffe, S. and Szegedy, C., 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

2


