ANEURYSMNET: DEEP NEURAL NETWORK-BASED SEGMENTATION OF ANEURYSMS IN 3D-MR ANGIOGRAPHY

Saieddine RJIBA1,2, Thierry URRUTY2, Pascal BOURDON2, Christine MALOIGNE-FERNANDEZ2, Roger DELEPAUL1, Remy GUILLEVIN1

1Canon Medical Systems, 2XLM laboratory, UMR CNRS7252, University of Poitiers, 3University and Hospital of Poitiers

INTRODUCTION

An aneurysm is a swelling of an artery as opposed to stenosis, which is a narrowing of the vessel. In an attempt to potentially augment clinician performance in medical imaging interpretation and reduce time of diagnosis, a two inputs single output deep learning model is used to uplift the challenges proposed by the ADAM committee.

Keywords: Aneurysm, Deep Learning, Multi-Input Single Output, Segmentation.

PREPROCESSING

Working with different MRA volumes that were acquired with different magnetic field strength and multiple modalities is a bit challenging especially when it comes to generalizing a model. To overcome this challenge, we use the Nyul and Udupa [2] normalization to provide standardized patient volumes to the neural network model. We resample the original TOF volume to an anisotropic voxel size of (0.5 × 0.5 × 0.5 mm) to provide a constant structure to the filters we will use inside the deep learning model.

VEssel SEGMENTATION

The following algorithm defines the key steps to extract the vessel tree from an MRA volume:

- MRA images resample using Trilinear interpolation to anisotropic voxels (0.5 × 0.5 × 0.5 mm)
- Calculate mean η and standard deviation σ of the center quarter region
- Extract connected regions with voxels intensity ≥ η − 2σ
- Perform morphological transformations on the initial mask with different filters (closing and erosion)
- Extract the inner volume that satisfies voxel intensity ≥ η + 2σ
- Extract connected components that have:
 1. Volume ≥ 2.7% of the inner volume
 2. Gravity center that lies in the center quarter of xy plane
- Perform more morphological transformations (mostly dilation and closing)

RESULTS

The network consists of two channels that go hand in hand in order to determine if a patch contains an aneurysm or not. The first channel is highly inspired by [1] which contains three convolutional layers, two maxpooling layers and two fully-connected layers. This channel process the MIP 2D image which highlights the important features in the patch but fails to point the 3D relationships among the structures in this 2D display. Another drawback can manifest itself when other insignificant structures with high values can obscure the relevant information we seek. To overcome this, we process, simultaneously the 3D patch in the relevant information we seek. To overcome this challenge, we use the Nyul and Udupa [2] normalization to provide standardized patient volumes to the neural network model. We resample the original TOF volume to an anisotropic voxel size of (0.5 × 0.5 × 0.5 mm) to provide a constant structure to the filters we will use inside the deep learning model.

REFERENCES

ACContrast

Figure 1: Aneurysm Segmentation Pipeline

- Anisotropic Resize: This includes a nyul and udupa normalization as a part of the preprocessing step to standardize the input data
- Vessel Segmentation: A crucial procedure to extract the essential structures of the MRA (vessels).

Figure 2: Double Input with 3D and 2.5D images and single output model

- AneurysmNet DL model: At the heart of this pipeline lies the double inputs single output deep learning model that shoulder the prediction task.
- After the prediction step, a reconstruction procedure of regrouping the prediction patches and a reshaping to original dimension is carried after eliminating the small structure (< 0.3mm) yielded by the DL model.

CONCLUSION

During this work we faced a big and major challenge which is the high false positive ratio. In order to decrease this ratio, two inputs deep learning model has proven to be able to eliminate a big portion of mispredictions that results from misinterpretation of the MIP transformation or the lack of channel attention of the 3D patches.

CONTACT INFORMATION

Email saieddine.rjiba@univ-poitiers.fr
Phone (+33) 7 69 00 48 82
Adresse XLM Laboratory, University of Poitiers 11 Bd Marie and Pierre Curie, Poitiers, France