Retina U-Net for Aneurysm Detection in MR Images

GERMAN **CANCER RESEARCH CENTER** IN THE HELMHOLTZ ASSOCIATION

Research for a Life without Cancer

Michael Baumgartner, Paul F. Jaeger, Fabian Isensee, Klaus H. Maier-Hein Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Germany, Heidelberg

ADAM 2020

Data

- 113 scans with 20 scans without diagnosed intracranial aneurysm
- 156 instances
 - 124 Untreated, unruptured aneurysm

(class 1)

• 32 Treated aneurysms or artefacts resulting from treated aneurysms (class 2)

Goal

• Predict center of untreated aneurysms

- Training and inference use patches with 224x224x56 Voxels

Retina U-Net + Path Aggregation Network

Qualitative Results

High quality prediction

Coarse localisation of small

aneurysms

5 Fold Cross Validation Results

IoU / Metric	Box FROC	Box AP
0.10	0.823	0.801
0.50	0.418	0.336

Prevalent Challenges

- Use center of bounding box to determine final center point
- Choose probability threshold which balances sensitivity and number of false positive per scan

Team: mibaumgartner

Task 1 Rank: 0.03 Tas	<pre></pre>
-----------------------	-------------

(lower rank is better)

Task 1	False Positives	Sensitivity
Average	0.14	0.66
Rank	0.01	0.05

accurate bounding box regression.

Please Note: These results are too positive because the splits do not consider patients with follow up.

Selected Publications

Jaeger et. al. Retina U-Net: Embarrassingly Simple Exploitation of Segmentation Supervision for Medical Object Detection ML4H NeurIPS19 Liu et. al. Path Aggregation Networks for Instance Segmentation CVPR18 Lin et. al. Feature Pyramid Networks for Object Detection CVPR17