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1 Methods

This section gives a short overview of the methods used for our submission to
the ADAM 2020 challenge.

1.1 Retina U-Net

Based on the previous success of object detection models in a variety of difficult
tasks in the medical [7] and natural image processing domain [4] we use Retina
U-Net [2] as our base model. Instead of a Feature Pyramid Network [3] we employ
a Path Aggregation Network [5] to directly enrich the detection features with
the information from the semantic segmentation branch. Furthermore, additional
convolutions are inserted after the element wise addition of the feature maps to
improve the representational power of the network. The final architecture is
depicted in Fig 1.

The network is trained for 600 epochs with 250 iterations per epoch. We use
the AdamW [6] optimizer with an initial learning rate of 3 x 10™% and a weight
decay of 3 x 107° to update the weights of the network. The first 20 epochs are
used to linearly ramp up the learning rate from 1 x 1076 to 3 x 10~ followed
by a PolyLR [1] schedule.

The anchor sizes are determined by the Cartesian product of: [6.0,8.0,10.0],
[5.0,7.0,10.0] and [4.0,6.0,24.0] voxels. This results in 27 anchors per position.

1.2 Preprocessing

We use the provided pre-aligned and bias field corrected data for training and
inference. To give the neural network a consistent field of view of the physical
space, we resample all the data to 0.357 x 0.357 x 0.5 mm and normalize each
scan and modality to have zero mean and unit standard deviation. Due to limited
GPU memory we use patches with 224 x 224 x 56 voxels and a batch size of two
during training and inference.
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Fig. 1. Shows the U-Net like encoder with a Feature Pyramid Network. Following
the Retina U-Net architecture, the decoder is extended to incorporate the additional
semantic segmentation information (green). Finally, a Path Aggregation Network is
used to generate the features which are used for the detection prediction (red).

1.3 Postprocessing

We use a 5 fold cross-validation during training and ensemble the final model of
each fold with weighted box clustering [2]. The final predictions are obtained by
computing the center point of the bounding boxes. Predictions with a probability
lower than 0.5 are removed to balance the sensitivity and the number of false
positive per scan.
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