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Our approach to this segmentation problem (task 2) is to use an ensemble of convolutional

neural  networks.  Our  architecture  is  based on U-Net  (Ronneberger  et  al.  2015)  and draws

inspiration from QuickNAT (Roy  et al.  2018)  and the work of  Sichtermann et  al.  (2019)  on

aneurysm segmentation.

Standardization.  For both training and inference, we rescale the pre-processed TOF-MRA and

anatomical  MRI  volumes  to  a  voxel  size  of  0.357x0.357x0.5  mm.  We  then  normalize  the

intensities of each volume individually to have zero-mean and unit variance .

Architectures.  Each sample includes one high resolution 64x64x64 patch, preserving the full

detail  of  the  original  volumes,  and  one  low-resolution  128x128x128  context  patch,

downsampled to 64x64x64. Both patches include two channels, extracted from the TOF-MRA

and the anatomical volume. 

• The U-Net architecture we implemented presents two different encoding paths, one for

the high resolution input patch and one for the low resolution input patch. These are

concatenated at the bottleneck and at each skip connection directed to the decoding

path, generating our predictions. The Depth of the U-shape is of three levels, with each

convolution block including 3 convolution-activation-batchnorm steps, and one residual

connection. 

• The CNN architecture also includes two input paths of two blocks following the same

specifications. Their outputs are concatenated and fed through three more convolution

blocks. This architecture does not include any pooling operation. 

Training. We extracted 100 negative samples and 121 positive samples (when aneurysms are

present) from each volume. We selected more positive samples to balance for those volumes

displaying no aneurysms.  Positive samples were selected by extracting a random positive voxel,

giving more weight to smaller aneurysms, and applying a random shift of up to 32 voxels on all

axes. On this dataset we trained 6 networks for each architecture according to the following

procedure. 

We randomly selected six groups of five subjects. Each network is trained using each group for

validation and the remaining data for training. The resulting groups are:

1. 10078F, 10042, 10072F, 10031, 10026



2. 10062B, 10045B, 10071F, 10078F, 10010

3. 10051B, 10070B, 10013, 10057B, 10076B

4. 10061F, 10003, 10076B, 10057B, 10065F

5. 10048F, 10047F, 10015, 10066B, 10016

6. 10070B, 10076B, 10076F, 10042, 10037

We  trained our networks using the RAdam optimizer (Liu, Jian, He et al., 2020) with a batch

size of 8, shuffling the patches  at every epoch. We calculated our loss function by combining

three loss functions: weighted categorical cross entropy, Generalized Dice Loss (Sudre et al.,

2017), and Boundary Loss (Kervadec et al. 2019). After each epoch we evaluated the results on

the test set using the Dice overlap and saved the best model according to this metric. While we

optimized to recognize three categories (background, aneurysms, and treated aneurysms) we

only select our model based on the Dice overlap for the aneurysm category. 

For the U-Net architecture, we further trained 6 networks without using GDL loss, replacing it

with  non-weighted  Dice  loss.  Our  validation  results  show  that  a  weighted  average  of  the

predictions of all three networks provides better results than only using two or one. The entire

process resulted in an ensamble of 18 neural networks.

Patch selection.  At inference time we select patches according to the following procedure.

Because aneurysms can typically be found in the TOF-images as brighter regions, we first select

the  0.25%  brightest  voxels.   Next  the  coordinates  are  divided  into  groups  based  on  their

location. The algorithm takes the first voxel selected and assigns to the same group all other

voxels within a 10-voxel distance on any axis. This is repeated until all  selected voxels have

been assigned to a group. Finally, for each group the algorithm calculates the average middle

point. These middle points are returned as centers for possible aneurysms. 

Inference. The  input  volume is  standardized,  a  list  of  locations of  interest  is  selected,  and

sample patches are extracted as described above.

For each neural network, all selected patches are processed to generate an equal number of

predictions. A voxel is preliminarly classified as aneurysm if that is predicted as the most likely

class. These prediction patches are combined in one single volume, where for each voxel we

take the average prediction across all patches including that voxel.  Based on validation data,

the prediction map intensities are rescaled to shift the optimal classification threshold at 0.5,

and assigned a weight  based on  their  validation Dice  score.  We can thus  take a  weighted

averaged across all neural networks and  threshold the result at the value of 0.5. The output is

brought  back  to  the  original  voxel  size  with  a  0-order  interpolation  and  the  output  file

generated.
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